

Imposition of natural and essential boundary conditions in embedded meshless methods using nodal integration

Gabriel Fougeron^{1,2} Guillaume Pierrot¹ Denis Aubry²

¹ESI Group, Rungis, France

²CentraleSupélec, Châtenay-Malabry, France

Fougeron, Pierrot, Aubry

Diffusion equation : Continuous weak formulation

Find $u \in H^1(\Omega)$ such that :

$$\begin{cases} \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} sv + \int_{\partial \Omega_N} gv \quad \forall v \in H^1_{0,D}(\Omega) \\ u_{|\partial \Omega_D} = u_0 \end{cases}$$

Diffusion equation : Continuous weak formulation Find $u \in H^1(\Omega)$ such that :

$$\begin{cases} \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} sv + \int_{\partial \Omega_N} gv \quad \forall v \in H^1_{0,D}(\Omega) \\ u_{|\partial \Omega_D} = u_0 \end{cases}$$

Discrete weak formulation

Find $u \in H^1(\mathcal{C})$ such that :

$$\begin{cases} \oint_{\mathcal{C}} \nabla u \cdot \nabla v = \oint_{\mathcal{C}} sv + \oint_{\partial \mathcal{C}_N} gv \quad \forall v \in H^1_{0,D}(\mathcal{C}) \\ u_{|\partial \mathcal{C}_D} = u_0 \end{cases}$$

Fougeron, Pierrot, Aubry

Discrete weak formulation Find $u \in H^{1}(\mathcal{C})$ such that : $\begin{cases} \oint_{\mathcal{C}} \nabla u \cdot \nabla v = \oint_{\mathcal{C}} sv + \oint_{\partial \mathcal{C}_{N}} gv \quad \forall v \in H^{1}_{0,D}(\mathcal{C}) \\ u_{|\partial \mathcal{C}_{D}} = u_{0} \end{cases}$

Fougeron, Pierrot, Aubry

$$H^{1}(\Omega) \longrightarrow H^{1}(\mathcal{C}) = (\mathcal{C} \to \mathbb{R})$$
$$H^{1}_{0,D}(\Omega) \longrightarrow H^{1}_{0,D}(\mathcal{C}) = (\mathcal{C} \setminus \partial \mathcal{C}_{D} \to \mathbb{R})$$

Discrete weak formulation Find $u \in H^{1}(\mathcal{C})$ such that : $\begin{cases} \oint_{\mathcal{C}} \nabla u \cdot \nabla v = \oint_{\mathcal{C}} sv + \oint_{\partial \mathcal{C}_{N}} gv \quad \forall v \in H^{1}_{0,D}(\mathcal{C}) \\ u_{|\partial \mathcal{C}_{D}} = u_{0} \end{cases}$

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Discrete weak formulation

Find $u \in H^1(\mathcal{C})$ such that :

$$\begin{cases} \oint_{\mathcal{C}} \nabla u \cdot \nabla v = \oint_{\mathcal{C}} sv + \oint_{\partial \mathcal{C}_N} gv \quad \forall v \in H^1_{0,D}(\mathcal{C}) \\ u_{|\partial \mathcal{C}_D} = u_0 \end{cases}$$

Fougeron, Pierrot, Aubry

$$\begin{split} \int_{\Omega} & \longrightarrow & \oint_{\mathcal{C}} & \text{positive, linear} \\ & \stackrel{\text{def}}{\Rightarrow} V_i > 0 \quad \forall i \in \mathcal{C} \\ & \int_{\Omega} f \mathrm{d}V \sim \oint_{\mathcal{C}} f = \sum_{i \in \mathcal{C}} V_i f(\mathbf{x}_i) \end{split}$$

Discrete weak formulation Find $u \in H^{1}(\mathcal{C})$ such that : $\begin{cases} \oint_{\mathcal{C}} \nabla u \cdot \nabla v = \oint_{\mathcal{C}} sv + \oint_{\partial \mathcal{C}_{N}} gv \quad \forall v \in H^{1}_{0,D}(\mathcal{C}) \\ u_{|\partial \mathcal{C}_{D}} = u_{0} \end{cases}$

Fougeron, Pierrot, Aubry

$$\begin{split} \int_{\partial\Omega} & \longrightarrow & \oint_{\partial\mathcal{C}} \quad \begin{array}{l} \text{positive, linear} \\ \stackrel{\text{def}}{\Rightarrow} \Gamma_i > 0 \quad \forall i \in \partial\mathcal{C} \\ & \oint_{\partial\mathcal{C}} f = \sum_{i \in \mathcal{C}} \Gamma_i f_i \end{split}$$

Discrete weak formulation Find $u \in H^{1}(\mathcal{C})$ such that : $\begin{cases} \oint_{\mathcal{C}} \nabla u \cdot \nabla v = \oint_{\mathcal{C}} sv + \oint_{\partial \mathcal{C}_{N}} gv \quad \forall v \in H^{1}_{0,D}(\mathcal{C}) \\ u_{|\partial \mathcal{C}_{D}} = u_{0} \end{cases}$

Fougeron, Pierrot, Aubry

$$abla \longrightarrow \mathbb{V} \quad ext{linear}
onumber \ V_i \mathbb{V}_i f = \sum_{j \in \mathcal{C}} \mathbf{A}_{i,j} f_j$$

Discrete weak formulation Find $u \in H^{1}(\mathcal{C})$ such that : $\begin{cases} \oint_{\mathcal{C}} \nabla u \cdot \nabla v = \oint_{\mathcal{C}} sv + \oint_{\partial \mathcal{C}_{N}} gv \quad \forall v \in H^{1}_{0,D}(\mathcal{C}) \\ u_{|\partial \mathcal{C}_{D}} = u_{0} \end{cases}$

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Constraints on point cloud generation ...

... in the interior ...

- "Harmonious" point clouds \Rightarrow Lower consistency error
- Case well-covered in the litterature
 - [Löhner, R., & Onate, E. (1998)]
 - [Fattal, R. (2011)]
 - [De Goes, F. & Desbrun, M. (2012)]

very efficient solutions exist

Constraints on point cloud generation ...

... in the interior ...

- "Harmonious" point clouds \Rightarrow Lower consistency error
- Case well-covered in the litterature
 - [Löhner, R., & Onate, E. (1998)]
 - [Fattal, R. (2011)]
 - [De Goes, F. & Desbrun, M. (2012)]
- very efficient solutions exist

... and on the boundary

- Added constraint on nodal positions : $\mathbf{x}\in\partial\Omega$
- Seldom covered in the litterature

Constraints on point cloud generation ...

... in the interior ...

- "Harmonious" point clouds \Rightarrow Lower consistency error
- Case well-covered in the litterature
 - [Löhner, R., & Onate, E. (1998)]
 - [Fattal, R. (2011)]
 - [De Goes, F. & Desbrun, M. (2012)]
- very efficient solutions exist

... and on the boundary

- Added constraint on nodal positions : $\mathbf{x} \in \partial \Omega$
- Seldom covered in the litterature

Completely bypass the generation of a boundary fitted cloud and design an embedded meshless method ?

Fougeron, Pierrot, Aubry

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

4 / 19

Fougeron, Pierrot, Aubry

Fougeron, Pierrot, Aubry

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

 $\mathcal{C} = \overset{\circ}{\mathcal{C}} \cup \partial \mathcal{C}$

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

4/19

Fougeron, Pierrot, Aubry

 $H^{1}(\mathcal{C}) = \{ u : \mathcal{C} \to \mathbb{R} \mid \forall b = (i, o) \in \partial \mathcal{C}, u_{b} = u_{i} + \mathbb{V}_{i} u \cdot (\mathbf{x}_{b} - \mathbf{x}_{i}) \}$

Fougeron, Pierrot, Aubry

 $H^{1}_{0,D}(\mathcal{C}) = \{ u : \mathcal{C} \to \mathbb{R} \mid \forall b = (i, o) \in \partial \mathcal{C} \setminus \partial \mathcal{C}_{D}, u_{b} = u_{i} + \mathbb{V}_{i} u \cdot (\mathbf{x}_{b} - \mathbf{x}_{i}) \}$ $\forall b = (i, o) \in \partial \mathcal{C}_{D}, \qquad u_{b} = 0$

Fougeron, Pierrot, Aubry

Separation of interior and boundary roles

Interior nodes \mathring{C}

• Volume integration V_i

Boundary nodes $\partial \mathcal{C}$

• Surface integration Γ_b

Separation of interior and boundary roles

Interior nodes \mathring{C}

- Volume integration V_i
- Holds DOFs

Boundary nodes $\partial \mathcal{C}$

- Surface integration Γ_b
- Enforce BCs

Separation of interior and boundary roles

Interior nodes \mathring{C}

- Volume integration V_i
- Holds DOFs
- Multiple boundary neighbors
 ⇔ Cells in a mesh

Boundary nodes ∂C

- Surface integration Γ_b
- Enforce BCs
- Single interior neighbor
 ⇔ Faces of a cell

Final discrete weak formulation

Discrete weak formulation

Find $u: \mathcal{C} \to \mathbb{R}$ such that :

$$\begin{cases} \oint_{\mathcal{C}} \nabla u \cdot \nabla v = \oint_{\mathcal{C}} sv + \oint_{\partial \mathcal{C}_N} gv \quad \forall v \in H^1_{0,D}(\mathcal{C}) \\ u - u_0 \in H^1_{0,D}(\mathcal{C}) \end{cases}$$

Find $u: \mathcal{C} \to \mathbb{R}$ such that :

$$\oint_{\mathcal{C}} \mathbb{\nabla} \mathbf{x} \cdot \mathbb{\nabla} v = \oint_{\partial \mathcal{C}_N} v \mathbf{n} \quad \forall v \in H^1_{0,D}(\mathcal{C})$$

Fougeron, Pierrot, Aubry

Find $u: \mathcal{C} \to \mathbb{R}$ such that :

$$\oint_{\mathcal{C}} \mathbb{\nabla} \mathbf{x} \cdot \mathbb{\nabla} v = \oint_{\partial \mathcal{C}_N} v \mathbf{n} \quad \forall v \in H^1_{0,D}(\mathcal{C})$$

Two necessary conditions :

•
$$\nabla \mathbf{x} = \mathbf{I}_d$$

 $\Leftrightarrow \nabla$ is first order consistent

Fougeron, Pierrot, Aubry

Find $u: \mathcal{C} \to \mathbb{R}$ such that :

$$\oint_{\mathcal{C}} \mathbb{\nabla} \mathbf{x} \cdot \mathbb{\nabla} v = \oint_{\partial \mathcal{C}_N} v \mathbf{n} \quad \forall v \in H^1_{0,D}(\mathcal{C})$$

Two necessary conditions :

•
$$\nabla \mathbf{x} = \mathbf{I}_d$$

 $\Leftrightarrow \nabla$ is first order consistent (easy)

Fougeron, Pierrot, Aubry

Find $u: \mathcal{C} \to \mathbb{R}$ such that :

$$\oint_{\mathcal{C}} \nabla \mathbf{x} \cdot \nabla v = \oint_{\partial \mathcal{C}_N} v \mathbf{n} \quad \forall v \in H^1_{0,D}(\mathcal{C})$$

Two necessary conditions :

•
$$\nabla \mathbf{x} = \mathbf{I}_d$$

 $\Leftrightarrow \nabla$ is first order consistent (easy)
• $\oint_{\mathcal{C}} \nabla v = \oint_{\partial \mathcal{C}} v\mathbf{n} \quad \forall v : \mathcal{C} \to \mathbb{R}$
 \Leftrightarrow Discrete version of Stokes' formula
 \Leftrightarrow Compatibility between $\oint_{\mathcal{C}}, \oint_{\partial \mathcal{C}}$ and ∇

Fougeron, Pierrot, Aubry

Compatibility conditions in coordinates

In the interior

$$orall i \in \mathring{\mathcal{C}}, \quad \sum_{j \in \mathring{\mathcal{C}}} \mathbf{A}_{j,i} = \mathbf{0}$$

⇔ Closedness of interior "dual cells"

Fougeron, Pierrot, Aubry

Compatibility conditions in coordinates

In the interior

$$orall i \in \mathring{\mathcal{C}}, \quad \sum_{j \in \mathring{\mathcal{C}}} \mathbf{A}_{j,i} = \mathbf{0}$$

⇔ Closedness of interior "dual cells"

Identical to the boundary fitted case away from $\partial \mathcal{C}$

In the interior

$$\forall i \in \mathring{\mathcal{C}}, \quad \sum_{j \in \mathring{\mathcal{C}}} \mathbf{A}_{j,i} = \mathbf{0}$$

⇔ Closedness of interior "dual cells"

Identical to the boundary fitted case away from $\partial \mathcal{C}$

On the boundary

$$\forall b = (i, o) \in \partial \mathcal{C}, \quad \mathbf{A}_{i, b} = \Gamma_b \mathbf{n}_b$$

 \Leftrightarrow Gradient coefficients are vector boundary surface areas.

Fougeron, Pierrot, Aubry

Corrected first order consistent gradient

• Necessary form :

$$\widetilde{\nabla}_i f = \nabla_i f + \sum_{j \in \mathcal{C}} \lambda_{i,j} (f_j - f_i - (\mathbf{x}_j - \mathbf{x}_i) \cdot \nabla_i f)$$

Corrected first order consistent gradient

Necessary form :

$$\widetilde{\nabla}_i f = \nabla_i f + \sum_{j \in \mathcal{C}} \lambda_{i,j} (f_j - f_i - (\mathbf{x}_j - \mathbf{x}_i) \cdot \nabla_i f)$$

On the boundary only

•
$$\lambda_{i,j} = 0$$
 if $\mathcal{N}(i) \cap \partial \mathcal{C} = \emptyset$

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

Corrected first order consistent gradient

• Necessary form :

$$\widetilde{\mathbb{\nabla}}_i f = \mathbb{\nabla}_i f + \sum_{j \in \mathcal{C}} \lambda_{i,j} (f_j - f_i - (\mathbf{x}_j - \mathbf{x}_i) \cdot \mathbb{\nabla}_i f)$$

On the boundary only

•
$$\lambda_{i,j} = 0$$
 if $\mathcal{N}(i) \cap \partial \mathcal{C} = \emptyset$

Solve compatibility equations for λ_{i,j}

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

Corrected first order consistent gradient

• Necessary form :

$$\widetilde{\mathbb{\nabla}}_i f = \mathbb{\nabla}_i f + \sum_{j \in \mathcal{C}} \lambda_{i,j} (f_j - f_i - (\mathbf{x}_j - \mathbf{x}_i) \cdot \mathbb{\nabla}_i f)$$

On the boundary only

- $\lambda_{i,j} = \mathbf{0}$ if $\mathcal{N}(i) \cap \partial \mathcal{C} = \emptyset$
- Solve compatibility equations for λ_{i,j}
- Sparse linear system

Fougeron, Pierrot, Aubry

Corrected first order consistent gradient

• Necessary form :

$$\widetilde{\mathbb{\nabla}}_i f = \mathbb{\nabla}_i f + \sum_{j \in \mathcal{C}} \lambda_{i,j} (f_j - f_i - (\mathbf{x}_j - \mathbf{x}_i) \cdot \mathbb{\nabla}_i f)$$

On the boundary only

- $\lambda_{i,j} = \mathbf{0}$ if $\mathcal{N}(i) \cap \partial \mathcal{C} = \emptyset$
- Solve compatibility equations for λ_{i,j}
- Sparse linear system
- Size of system $\propto \#(\partial \mathcal{C})$

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

Corrected first order consistent gradient

• Necessary form :

$$\widetilde{\mathbb{\nabla}}_i f = \mathbb{\nabla}_i f + \sum_{j \in \mathcal{C}} \lambda_{i,j} (f_j - f_i - (\mathbf{x}_j - \mathbf{x}_i) \cdot \mathbb{\nabla}_i f)$$

On the boundary only

- $\lambda_{i,j} = \mathbf{0}$ if $\mathcal{N}(i) \cap \partial \mathcal{C} = \emptyset$
- Solve compatibility equations for λ_{i,j}
- Sparse linear system
- Size of system $\propto \#(\partial \mathcal{C})$
- Ill-conditioned : $\kappa \propto h^4$

Analytical test case : cloud construction

Initial cloud \mathcal{U} : Halton distribition

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

10/19

Analytical test case : cloud construction

Initial cloud \mathcal{U} : Halton distribition

Trimmed cloud \mathcal{C}

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Analytical test case : source and solution

 $u_{\text{exact}} = \sin(k_x x) \sin(k_y y)$

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

SPH-like volumes Uniform volumes Plain curve : Full Dirichlet

Dashed curve : Neumann + Dirichlet

linear fit : 0.97 - 1.19

⇒ First order convergence

Fougeron, Pierrot, Aubry

linear fit :

Uniform volumes Plain curve : Full Dirichlet

SPH-like volumes

Dashed curve : Neumann + Dirichlet

Dirichlet : 1.72 - 2.23 Neumann : 1.24 - 1.73

Fougeron, Pierrot, Aubry

Elasticity simulations : stress concentration

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Elasticity simulations : stress concentration

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

14/19

Elasticity simulations : stress concentration

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

-----**H H H H H H H H H H H** H 6. 6 -----(+) (+) (+) (+) (+) (+) (+) (+) (+) (+) en en en en en en 44 44 (+) (+) (+) THE FRE FRE FRE FRE FRE FRE

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

15/19

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Inner boundaries

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

Inner boundaries

Fougeron, Pierrot, Aubry

Meshless BC - X-DMS

June 20th 2017

16/19

Summary

- Proposition of an immersed meshless method
- Good H^1 behavior
- Allows the computation of stress intensity factors

Summary

- Proposition of an immersed meshless method
- Good H^1 behavior
- Allows the computation of stress intensity factors

Ongoing and future work

- Investigate stability and L² behavior
- Simulate crack propagation

Thanks for your attention !

gabriel.fougeron@esi-group.com guillaume.pierrot@esi-group.com

denis.aubry@ecp.fr

Fougeron, Pierrot, Aubry