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Operator Framework

Diffusion equation : Continuous weak formulation
Find u ∈ H1(Ω) such that :

ˆ
Ω
∇u · ∇v =

ˆ
Ω
sv +

ˆ
∂ΩN

gv ∀v ∈ H1
0,D(Ω)

u|∂ΩD
= u0

Discrete weak formulation
Find u ∈ H1(C) such that :�

ˆ
C
�u ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀v ∈ H1
0,D(C)

u|∂CD
= u0

∂C = ∂CD ∪ ∂CN

C
H1(Ω) −→ H1(C) = (C → R)

H1
0,D(Ω) −→ H1

0,D(C) = (C\∂CD → R)

ˆ
Ω
−→ �

ˆ
C

positive, linear
def⇒ Vi > 0 ∀i ∈ C

ˆ
Ω
fdV ∼ �

ˆ
C
f =

∑
i∈C

Vif(xi)

ˆ
∂Ω

−→
“

∂C
positive, linear

def⇒ Γi > 0 ∀i ∈ ∂C
“

∂C
f =

∑
i∈C

Γifi

∇ −→ � linear

Vi�if =
∑
j∈C

Ai,jfj

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 2 / 19



Operator Framework

Diffusion equation : Continuous weak formulation
Find u ∈ H1(Ω) such that :

ˆ
Ω
∇u · ∇v =

ˆ
Ω
sv +

ˆ
∂ΩN

gv ∀v ∈ H1
0,D(Ω)

u|∂ΩD
= u0

Discrete weak formulation
Find u ∈ H1(C) such that :�

ˆ
C
�u ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀v ∈ H1
0,D(C)

u|∂CD
= u0

∂C = ∂CD ∪ ∂CN

C
H1(Ω) −→ H1(C) = (C → R)

H1
0,D(Ω) −→ H1

0,D(C) = (C\∂CD → R)

ˆ
Ω
−→ �

ˆ
C

positive, linear
def⇒ Vi > 0 ∀i ∈ C

ˆ
Ω
fdV ∼ �

ˆ
C
f =

∑
i∈C

Vif(xi)

ˆ
∂Ω

−→
“

∂C
positive, linear

def⇒ Γi > 0 ∀i ∈ ∂C
“

∂C
f =

∑
i∈C

Γifi

∇ −→ � linear

Vi�if =
∑
j∈C

Ai,jfj

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 2 / 19



Operator Framework

Diffusion equation : Continuous weak formulation
Find u ∈ H1(Ω) such that :

ˆ
Ω
∇u · ∇v =

ˆ
Ω
sv +

ˆ
∂ΩN

gv ∀v ∈ H1
0,D(Ω)

u|∂ΩD
= u0

Discrete weak formulation
Find u ∈ H1(C) such that :�

ˆ
C
�u ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀v ∈ H1
0,D(C)

u|∂CD
= u0

∂C = ∂CD ∪ ∂CN

C

H1(Ω) −→ H1(C) = (C → R)

H1
0,D(Ω) −→ H1

0,D(C) = (C\∂CD → R)

ˆ
Ω
−→ �

ˆ
C

positive, linear
def⇒ Vi > 0 ∀i ∈ C

ˆ
Ω
fdV ∼ �

ˆ
C
f =

∑
i∈C

Vif(xi)

ˆ
∂Ω

−→
“

∂C
positive, linear

def⇒ Γi > 0 ∀i ∈ ∂C
“

∂C
f =

∑
i∈C

Γifi

∇ −→ � linear

Vi�if =
∑
j∈C

Ai,jfj

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 2 / 19



Operator Framework

Diffusion equation : Continuous weak formulation
Find u ∈ H1(Ω) such that :

ˆ
Ω
∇u · ∇v =

ˆ
Ω
sv +

ˆ
∂ΩN

gv ∀v ∈ H1
0,D(Ω)

u|∂ΩD
= u0

Discrete weak formulation
Find u ∈ H1(C) such that :�

ˆ
C
�u ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀v ∈ H1
0,D(C)

u|∂CD
= u0

∂C = ∂CD ∪ ∂CN

C

H1(Ω) −→ H1(C) = (C → R)

H1
0,D(Ω) −→ H1

0,D(C) = (C\∂CD → R)

ˆ
Ω
−→ �

ˆ
C

positive, linear
def⇒ Vi > 0 ∀i ∈ C

ˆ
Ω
fdV ∼ �

ˆ
C
f =

∑
i∈C

Vif(xi)

ˆ
∂Ω

−→
“

∂C
positive, linear

def⇒ Γi > 0 ∀i ∈ ∂C
“

∂C
f =

∑
i∈C

Γifi

∇ −→ � linear

Vi�if =
∑
j∈C

Ai,jfj

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 2 / 19



Operator Framework

Diffusion equation : Continuous weak formulation
Find u ∈ H1(Ω) such that :

ˆ
Ω
∇u · ∇v =

ˆ
Ω
sv +

ˆ
∂ΩN

gv ∀v ∈ H1
0,D(Ω)

u|∂ΩD
= u0

Discrete weak formulation
Find u ∈ H1(C) such that :�

ˆ
C
�u ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀v ∈ H1
0,D(C)

u|∂CD
= u0

∂C = ∂CD ∪ ∂CN

C
H1(Ω) −→ H1(C) = (C → R)

H1
0,D(Ω) −→ H1

0,D(C) = (C\∂CD → R)

ˆ
Ω
−→ �

ˆ
C

positive, linear
def⇒ Vi > 0 ∀i ∈ C

ˆ
Ω
fdV ∼ �

ˆ
C
f =

∑
i∈C

Vif(xi)

ˆ
∂Ω

−→
“

∂C
positive, linear

def⇒ Γi > 0 ∀i ∈ ∂C
“

∂C
f =

∑
i∈C

Γifi

∇ −→ � linear

Vi�if =
∑
j∈C

Ai,jfj

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 2 / 19



Operator Framework

Diffusion equation : Continuous weak formulation
Find u ∈ H1(Ω) such that :

ˆ
Ω
∇u · ∇v =

ˆ
Ω
sv +

ˆ
∂ΩN

gv ∀v ∈ H1
0,D(Ω)

u|∂ΩD
= u0

Discrete weak formulation
Find u ∈ H1(C) such that :�

ˆ
C
�u ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀v ∈ H1
0,D(C)

u|∂CD
= u0

∂C = ∂CD ∪ ∂CN

C
H1(Ω) −→ H1(C) = (C → R)

H1
0,D(Ω) −→ H1

0,D(C) = (C\∂CD → R)

ˆ
Ω
−→ �

ˆ
C

positive, linear
def⇒ Vi > 0 ∀i ∈ C

ˆ
Ω
fdV ∼ �

ˆ
C
f =

∑
i∈C

Vif(xi)

ˆ
∂Ω

−→
“

∂C
positive, linear

def⇒ Γi > 0 ∀i ∈ ∂C
“

∂C
f =

∑
i∈C

Γifi

∇ −→ � linear

Vi�if =
∑
j∈C

Ai,jfj

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 2 / 19



Operator Framework

Diffusion equation : Continuous weak formulation
Find u ∈ H1(Ω) such that :

ˆ
Ω
∇u · ∇v =

ˆ
Ω
sv +

ˆ
∂ΩN

gv ∀v ∈ H1
0,D(Ω)

u|∂ΩD
= u0

Discrete weak formulation
Find u ∈ H1(C) such that :�

ˆ
C
�u ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀v ∈ H1
0,D(C)

u|∂CD
= u0

∂C = ∂CD ∪ ∂CN

C
H1(Ω) −→ H1(C) = (C → R)

H1
0,D(Ω) −→ H1

0,D(C) = (C\∂CD → R)

ˆ
Ω
−→ �

ˆ
C

positive, linear
def⇒ Vi > 0 ∀i ∈ C

ˆ
Ω
fdV ∼ �

ˆ
C
f =

∑
i∈C

Vif(xi)

ˆ
∂Ω

−→
“

∂C
positive, linear

def⇒ Γi > 0 ∀i ∈ ∂C
“

∂C
f =

∑
i∈C

Γifi

∇ −→ � linear

Vi�if =
∑
j∈C

Ai,jfj

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 2 / 19



Operator Framework

Diffusion equation : Continuous weak formulation
Find u ∈ H1(Ω) such that :

ˆ
Ω
∇u · ∇v =

ˆ
Ω
sv +

ˆ
∂ΩN

gv ∀v ∈ H1
0,D(Ω)

u|∂ΩD
= u0

Discrete weak formulation
Find u ∈ H1(C) such that :�

ˆ
C
�u ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀v ∈ H1
0,D(C)

u|∂CD
= u0

∂C = ∂CD ∪ ∂CN

C
H1(Ω) −→ H1(C) = (C → R)

H1
0,D(Ω) −→ H1

0,D(C) = (C\∂CD → R)

ˆ
Ω
−→ �

ˆ
C

positive, linear
def⇒ Vi > 0 ∀i ∈ C

ˆ
Ω
fdV ∼ �

ˆ
C
f =

∑
i∈C

Vif(xi)

ˆ
∂Ω

−→
“

∂C
positive, linear

def⇒ Γi > 0 ∀i ∈ ∂C
“

∂C
f =

∑
i∈C

Γifi

∇ −→ � linear

Vi�if =
∑
j∈C

Ai,jfj

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 2 / 19



Constraints on point cloud generation . . .

. . . in the interior . . .
"Harmonious" point clouds⇒ Lower consistency error
Case well-covered in the litterature
- [Löhner, R., & Onate, E. (1998)]

- [Fattal, R. (2011)]

- [De Goes, F. & Desbrun, M. (2012)]

very efficient solutions exist

. . . and on the boundary

Added constraint on nodal positions : x ∈ ∂Ω
Seldom covered in the litterature

Completely bypass the generation of a boundary fitted cloud and design
an embedded meshless method ?
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Embedding a point cloud in the geometry

U

U

◦C

∂Ω

�

ˆ
C
f

def= �

ˆ
U
fδC̊ =

∑
i∈C̊

Vifi

i

◦C

∂Ω

UU

◦C

∂Ω

∂C U

◦C

∂Ω

∂C

{
xb = (1− αb)xi + αbxo ∈ ∂Ω
αb ∈ [0, 1]C = C̊ ∪ ∂C

“
∂C
f =

∑
b∈∂C

Γbfb
Vi�if =

∑
j∈C̊

Ai,jfjVi�
C
i f =

∑
j∈C̊

AUi,jfj +
∑

b=(i,o)∈∂C

1
αb

AUi,ofb

C

∂C U

b
ij

∂Ω

H1(C) = {u : C → R | ∀b = (i, o) ∈ ∂C, ub = ui +�iu · (xb − xi)}H1
0,D(C) = {u : C → R | ∀b = (i, o) ∈ ∂C\∂CD, ub = ui +�iu · (xb − xi)}

∀b = (i, o) ∈ ∂CD, ub = 0
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Separation of interior and boundary roles

Interior nodes C̊
Volume integration Vi

Holds DOFs

Multiple boundary neighbors
⇔ Cells in a mesh

Boundary nodes ∂C

Surface integration Γb

Enforce BCs

Single interior neighbor
⇔ Faces of a cell
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Final discrete weak formulation

Discrete weak formulation
Find u : C → R such that :�

ˆ
C
�u ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀v ∈ H1
0,D(C)

u− u0 ∈ H1
0,D(C)
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Patch test conditions

Exact linear solution ?
Find u : C → R such that :

�

ˆ
C
�x ·�v =

“
∂CN

vn ∀v ∈ H1
0,D(C)

Two necessary conditions :

�x = Id

⇔ � is first order consistent

(easy)

�

ˆ
C
�v =

“
∂C
vn ∀v : C → R

⇔ Discrete version of Stokes’ formula

⇔ Compatibility between �
ˆ
C
,
“

∂C
and �.
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Compatibility conditions in coordinates

In the interior

∀i ∈ C̊,
∑
j∈C̊

Aj,i = 0

⇔ Closedness of interior "dual cells"

Identical to the boundary fitted case away from ∂C

On the boundary
∀b = (i, o) ∈ ∂C, Ai,b = Γbnb

⇔ Gradient coefficients are vector boundary surface
areas.
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Correction for compatibility

Corrected first order consistent gradient

Necessary form :
∼
�if = �if +

∑
j∈C

λi,j(fj − fi − (xj − xi) ·�if)

On the boundary only
λi,j = 0 if N (i) ∩ ∂C = ∅

Solve compatibility equations for λi,j

Sparse linear system

Size of system ∝ #(∂C)

Ill-conditioned : κ ∝ h4
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Analytical test case : cloud construction
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Analytical test case : source and solution
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Convergence in the H1 semi-norm

‖usim−uexa‖H1(C)
‖uexa‖H1(C)

h

linear fit : 0.97 - 1.19

⇒ First order convergence

SPH-like volumes

Uniform volumes

Plain curve :
Full Dirichlet

Dashed curve :
Neumann + Dirichlet
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Convergence in the L2 norm

‖usim−uexa‖L2(C)
‖uexa‖L2(C)

h

linear fit :

Dirichlet : 1.72 - 2.23
Neumann : 1.24 - 1.73

SPH-like volumes

Uniform volumes

Plain curve :
Full Dirichlet

Dashed curve :
Neumann + Dirichlet
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Elasticity simulations : stress concentration
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Stress intensity factor at crack

|KI num −KI exa|

h

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 15 / 19



Stress intensity factor at crack

|KI num −KI exa|

h

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 15 / 19



Stress intensity factor at crack

|KI num −KI exa|

h

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 15 / 19



Stress intensity factor at crack

|KI num −KI exa|

h

Fougeron, Pierrot, Aubry Meshless BC - X-DMS June 20th 2017 15 / 19



Inner boundaries
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Inner boundaries
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Summary and future work

Summary

Proposition of an immersed meshless method
Good H1 behavior
Allows the computation of stress intensity factors

Ongoing and future work

Investigate stability and L2 behavior
Simulate crack propagation
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The End

Thanks for your attention !

gabriel.fougeron@esi-group.com guillaume.pierrot@esi-group.com

denis.aubry@ecp.fr
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